riemann solver meaning in Chinese
黎曼解算子
Examples
- Riemann solver and artificial viscosity in sph
解与人工粘性 - Two - order enhanced un - split finite volume euler method for multi - fluid flow , which combines the roe approximate riemann solver , is developed to simulate the multi - fluid interactions , such as the fluid described by polynomial eos , stiffen gas eos , jones - wilkins - lee ( jwl ) gaseous explosive eos , cochran - chan ( cc ) solid explosive eos and hom shock wave eos , etc . numerical results of the id , 2d and 3d multi - fluid interaction examples show that the high - resolution method and interface capturing equations can resolve the multi - fluid flow correctly and successfully . a simple fluid - mixture type ppm algorithm for multi - fluid flow , which is based on vof interface capturing method and resolved by langange / remap two steps , is developed to simulate the high density or high pressure ratio flow at both sides of the interface
本文提出了实用于多介质流体的增强型二阶精度有限体积欧拉数值计算方法,采用roe方法近似求解riemann问题,可以适用于多项式状态方程、 “ stiffengas ”状态方程、 jones - wilkins - lee爆轰产物状态方程、 cochran - chan固体炸药状态方程以及hom状态方程等,并对多介质流体相互作用的一维、二维、三维问题进行数值计算,数值验证了本文给出的高精度差分格式和界面捕捉方法的正确性,两种方法耦合形成的多介质流体数值计算方法是成功的。 - In this paper , a class of the second order accurate explicit gauss schemes with staggered grids for the computation of solutions of hyperbolic conservation laws are presented , the advantages of these schemes are : riemann solver - free , faster and programming is much simple , no complete set of eigenvectors is needed and hence weakly hyperbolic system can be solved . in one dimensional case , these schemes are and total variation diminishing and convergence under the restriction of cfl condition , the convergence rate is the first order , and a pointwise error bound is presented
本文在交错网格的情况下,利用gauss型求积公式构造了一类求解双曲守恒律的时空一致二阶显式gauss型差分格式,这类gauss型差分格式,具有不需要求解riemann问题、计算简单、工作量少、编程简便等优美特点,而且由于这类格式在应用于求解方程组的时候,不需要对方程组进行特征分解,因此可应用于求解非严格的双曲守恒律方程组。 - And finally , with hllc and lax - friedrichs type approximate riemann solver for discretising conservative equations and a nonconservative equation , a simple accurate and fully eulerian numerical method is presented . compared with the numerical results of hll scheme , the hllc scheme has a high resolution for shock waves and avoiding the nonphysical oscillation of the hll scheme
最后用lax ? friedrichs格式及hllc格式作为通量函数对守恒一维euler型方程组进行了离散,并将数值模拟结果和saurel的hll格式模拟结果进行了比较,发现:在两相流数值模拟过程中,相对来说hllc格式对激波的分辨率最高,结果最稳定,避免了hll格式在间断处的非物理性数值振荡。 - A semi - discrete form of our scheme is also presented . this new reconstruction is a third order accuracy in smooth regions and non - oscillations at cell interfaces . our scheme enjoys the main advantage of the central schemes - simplicity , namely it does not employ riemann solvers and hence the intricate and time - consuming characteristic decomposition are avoided
本文针对一维双曲型守恒律的初值问题,研究了二阶和三阶中心差分格式,提出了一种改进的三阶中心差分格式及其半离散形式,主要是引入了一种新的重构,并证明了这种重构在光滑区域具有三阶精度且在网格边界无振荡,所提的格式保持了中心差分格式简单的优点,不需要求解黎曼问题,避免了复杂且耗时的特征分解过程。